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Abstract

Partial Labeled Markov Chains are simultaneously generalizations of process algebra and of traditional

Markov chains. They provide a foundation for interacting discrete probabilistic systems, the interaction

being synchronization on labels as in process algebra. Existing notions of process equivalence are too

sensitive to the exact probabilities of various transitions. This paper addresses contextual reasoning princi-

ples for reasoning about more robust notions of "approximate" equivalence between concurrent interacting

probabilistic systems.

• We develop a family of metrics between partial labeled Markov chains to formalize the notion of

distance between processes.

• We show that processes at distance zero are bisimilar.

• We describe a decision procedure to compute the distance between two processes.

• We show that reasoning about approximate equivalence can be done compositionally by showing

that process combinators do not increase distance.

• We introduce an asymptotic metric to capture asymptotic properties of Markov chains; and show

that parallel composition does not increase asymptotic distance.
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1 Introduction

Probability, like nondeterminism, is an abstraction mechanism used to hide inessential or unknown details.

Statistical mechanics -- originated by Boltzmann, Gibbs, Maxwell and others -- is the fundamental success-

ful example of the use of the probabilistic abstraction. Computer science, and process algebraic theories in

particular, are focussed on providing compositional reasoning techniques. Our investigations are concerned

with the development of contextual reasoning principles for concurrent interacting probabilistic systems. Con-

sider the following paradigmatic examples.

Example 1.1 [AJKv097] analyzes a component (say c) of the Lucent Technologies' 5ESS _ telephone switch-

ing system that is responsible for detecting malfunctions on the hardware connections between switches I . This

component responds to alarms generated by another complicated system that is only available as a black-box.

A natural model to consider for the black-box is a stochastic one, which represents the timing and duration of

the alarm by random variables with a given probability distribution. [AJKv097] then shows that the desired

properties hold with extremely high probability, showing that the component being analyzed approxhnates the

desired idealized behavior (say i) with sufficient accuracy.

Example 1.2 Consider model-based diagnosis settings. Often information about failure models and their

associated probabilities is obtained from field studies and studies of manufacturing practices. Failure models

can be incorporated by assigning a variable, called the mode of the component, to represent the physical state

of the component, and associating a failure model with each value of the mode variable. Probabilistic infor-

mation can be incorporated by letting the mode vary according to the given probability distribution [dKW89].

The diagnostic engine computes the most probable diagnostic hypothesis, given observations about the cur-

rent state of the system.

These examples illustrate the modes of contextual reasoning that interest us. In the first example, we are

interested in exploring whether c can substitute for i in arbitrary program contexts; i.e. for some context C_,

does C[c] continue to approximate C[i]. Similarly, in the second example, we are looking to see the extent

to which systems with similar failure behaviors are intersubstitutable. Such a question perforce generalizes

the study of congruences elaborated by the theory of concurrency. The theory of concurrency performs a
study of "exactly intersubstitutable" processes with temporal behavior. In the probabilistic context, the extant

notions of bisimulation (or any process equivalence for that matter) are too sensitive to the probabilities; a

slight perturbation of the probabilities would make two systems non-bisimilar. The examples motivate a shift

to the study of the more robust notion of "approximately intersubstitutable".

The next example illustrates a deeper interaction of the temporal and probabilistic behavior of processes.

Example 1.3 Consider a producer and a consumer process connected by a buffer, where the producer is say

a model of a network. Examples of this kind are studied extensively in the performance modeling of systems.

In a model of such a system, probabili_, serves to abstract the details of the producer (resp. consumer)

process by considering rates of production (resp. consumption) of data based on empirical information. This

model can be analyzed to calculate the number of packets lost as a function of the probabilities and the buffer

size. The analysis aids in tuning s).,stem parameters, e.g. to optimize the buffer size. These studies are often

couched in terms of asymptotic/stationary behavior to abstract over the transient behavior associated with

system initialization (such as large bursts of communication) evident when the system begins execution.

Such examples motivate the study of equality notions based on "eventually approximately intersubstitutable"

processes.

1Foranother instance of modeling a complexenvironment that is best done statistically,see IGat95].



1.1 Our results

Partial labeled Markov chains (plHc) are the discrete probabilistic analogs of labeled transition systems. In

this model "internal choice" is modeled probabilistically and the so-called "external choice" is modeled by

the indeterminate actions of the environment. The starting point of our investigation is the study of strong

bisimulation for plHc. This study was initiated by [LS91] for plHc in a style similar to the queuing theory

notion of "lumpability". This theory has been extended to continuous state spaces and continuous distribu-

tions [BDEP97, DEP98]. These papers showed:

• Bisimulation is an equivalence relation.

• The logic £ given by ¢ ::= T I¢1 A ¢2 I <a)q¢is complete for bisimulation 2

In the context of the earlier discussion, we note that probabilistic bisimulation is too "exact" for our

purposes -- intuitively, two states are bisimilar only if the probabilities of outgoing transitions match ex-

actly, motivating the search for a relaxation of the notion of equivalence of probabilistic processes. Jou and

Smolka [JS90] note that the idea of saying that processes that are close should have probabilities that are

close does not yield a transitive relation, as illustrated by an example of van Breugel [Bre]. This leads them

to propose that the correct formulation of the "nearness" notion is via a metric.
A metric d is a function that yields a real number distance for each pair of processes. It should satisfy

the usual metric conditions: d(P, Q) = 0 implies P is bisimilar to Q, d(P, Q) = d(Q, P) and d(P, R) <

d(P, Q) + d(Q, R). Inspired by the Hutchinson metric on probability measures [Hut81], we demand that d

be "Lipschitz" with respect to probability numbers, an idea best conveyed via a concrete example.

Example 1.4 Consider the family ofplMcs {P_ ] 0 < e < r} where P_ = ar-,.Q, i.e. P_ is the plMc that

does an a with probability r - _ and then behaves like Q. We demand that:

d(P_x, Pe2) _ tel - _=l"

This implies that P_ converges to Po as e tends to O.

Metrics on plHcs. Our technical development of these intuitions is based on the key idea expounded by

Kozen [Koz85] to generalize logic to handle probabilistic phenomena.

Classical logic Generalization

Truth values {0, 1}

Propositional function
State

Evaluation of prop. functions

Interval [0, 1]
Measurable function

Measure

Integration

Following these intuitions, we consider a class br of functions that assign a value in the interval [0, 1] to states

of a plHc. These functions are inspired by the formulas of £ -- the result of evaluating these functions at

a state corresponds to a quantitative measure of the extent to which the state satisfies a formula of £. The

identification of this class of functions is a key contribution of this paper, and motivates a metric d:

d(P, Q) = sup{lf(sp) - f(sQ)l I f 6 .T}.

In section 4, we formalize the above intuitions to define a family of metrics {d c I c 6 (0, 1]}. These

metrics support the spectrum of possibilities of relative weighting of the two factors that contribute to the

2a is a label, q is a rational. (a)qcp holds in a state s if s has probability > q of making an a-transition to the set of states satisfying

¢. Note that such a characterization of bisimulation using a negation-free logic is a new result even for discrete systems.

2



distancebetweenprocesses:thecomplexityof thefunctionsdistinguishingthemversustheamountbywhich
eachfunctiondistinguishesthem.d 1 captures only the differences in the probability numbers; probability

differences at the first transition are treated on par with probability differences that arise very deep in the

evolution of the process. In contrast, d c for c < 1 give more weight to the probability differences that arise

earlier in the evolution of the process, i.e. differences identified by simpler functions. As c approaches 0, the

future gets discounted more.
As is usual with metrics, the actual numerical values of the metric are less important than the notions of

convergence that they engender 3. Our justification of the metrics will rely on properties like the significance

of zero distance, relative distance of processes, contractivity and the notion of convergence rather than a

detailed justification of the exact numerical values.

Example 1.5 Consider the plMc P with two states, and a transition going from the start state to the other

state with probability p. Let Q be a similar process, with the probability q. Then in section 4, we show that

de(P, Q) = clp - ql. Now if we consider P' with a new start state, which makes a b transition to P with

probability 1, and similarly Q' whose start state transitions to Q on b with probability 1, then dc(P ', Q') =

c2 Ip - ql, showing that the next step is discounted by c.

Each of these metrics agree with bisimulation:

dc(p, Q)= 0, iff P and Q are bisimilar.

For c < 1, we show how to evaluate de(P, Q) to within an e-error for finite state processes P, Q.

An "asymptotic" metric on plMc. The d e metric (for c < 1) is heavily influenced by the initial transitions

of a process -- processes which can be differentiated early are far apart. For each c E (0, 1], we define a dual

metric dc (Section 6) on plMcs to capture the idea that processes are close if they have the same behavior

"eventually", thus disregarding their initial behavior. Informally, we proceed as follows. Let P after s stand

for the plMc P after exhibiting a trace s. Then, the j'th distance d_ between P, Q after exhibiting traces of

length j is given by
sup{dC(p after s, Q after s) [ length(s) = j}.

The asymptotic distance between P, Q is given by the appropriate limit of the d_'s:

dCoo(P,Q) = limsup d_(P, Q).
i--.+c_ j>i

A process algebra of probabUistically determinate processes. In order to illustrate the properties of the

metrics via concrete examples, we use an algebra of probabilistically determinate processes and a (bounded)

buffer example coded in the algebra (Section 5). This process algebra has input and output prefixing, parallel

composition and a probabilistic choice combinator. We do not consider hiding since this paper focuses on

strong (as opposed to weak) probabilistic bisimulation.

We show that bisimulation is a congruence for all these operations. Furthermore, we generalize the result

that bisimulation is a congruence, by showing that process combinators do not increase distance in any of the

d c metrics. Formally, let dc(pi, Qi) = e,. For every n-ary process combinator C[X1 .... , X,], we have

,O,)) <
i

3We take the uniformity view of metrics, e.g. see [Bou89]. Intuitively, a uniformity captures relative distances, e.g. if x is closer

to = than y; it ignores the numerical distances. For example, a uniformity on a metric space M is induced by the collection of sets

N, = {(x, y) 6 M × M I d(x, y) < e} - note that different metrics may yield the same uniformity.



We show that the prefixing and parallel composition combinators do not increase the asymptotic distance

dc. However, the probabilistic choice combinator is not contractive for dc.

Continuous systems. While this paper focuses on systems with a countable number of states, all the results

extend to systems with continuous state spaces. The technical development of continuous systems requires

measure theory apparatus to develop analogs of the results in section 34 and will be reported in a separate

paper

Related and future work. In this paper, we deal with probabilistic nondeterminism. In a probabilistic

analysis, quantitative information is recorded and used in the reasoning. In contrast, a purely qualitative

nondeterministic analysis does not require and does not yield quantitative information. In particular when

one has no quantitative information at all, one has to work with indeterminacy -- using a uniform probability

distribution is not the same as expressing complete ignorance about the possible outcomes.

The study of the interaction of probability and nondeterminism, largely in the context of exact equiv-

alence of probabilistic processes, has been explored extensively in the context of different models of con-

currency. Probabilistic process algebras add a notion of randomness to the process algebra model and have

been studied extensively in the traditional framework of (different) semantic theories of (different) process

algebras (to name but a few, see [HJ90, JY95, LS91, HS86, BBS95, vGSS95, CSZ92]) e.g. bisimula-

tion, theories of (probabilistic) testing, relationship with (probabilistic) modal logics etc. Probabilistic Petri

nets [Mar89, VN92] add Markov chains to the underlying Petri net model. This area has a well developed

suite of algorithms for performance evaluation. Probabilistic studies have also been carried out in the context

of IO Automata [Seg95, WSS97].

In contrast to the above body of research the primary theme of this paper is the the study of intersubsti-

tutivity of (eventually) (approximately) equivalent processes. The ideas of approximate substitutivity in this

paper are inspired by the work of Jou and Smoka [JS90] referred to earlier and the ideas in the area of perfor-

mance modeling as exemplified in on the work on process algebras for compositional performance modeling

(see for example [Hi194]). The extension of the methods of this paper to systems which have both probability

and traditional nondeterminism remains open and will be the object of future study.

The verification community has been active in developing model checking tools for probabilistic systems,

for example [BLL+96, BdA95, BCHG+97, CY95, HK97]. Approximation techniques in the spirit of those of

this paper have been explored for hybrid systems [GHJ97]. In future work, we will explore efficient algorithms

and complexity results for our metrics.

Our work on the asymptotic metric is closely related to, at least in spirit, the work of Lincoln, Mitchell,

Mitchell and Scedrov [LMMS98] in the context of security protocols. Both [LMMS98] and this paper

consider the asymptotic behavior of a single process, rather than the limiting behavior of a probabilistically

described family of processes as is performed in some analysis performed in Markov theory.

Organization of this paper The rest of this paper is organized as follows. First, in section 2, we review

the notions of plHc and probabilistic bisimulation and associated results to make the paper self-contained.

We next present (section 3) an alternate way to study processes using real-valued functions and show that

this view presents an alternate characterization of probabilistic bisimulation. In section 4, we define a family

of metrics, illustrate with various examples and describe a decision procedure to evaluate the metric. The

following section 5 describes a process algebra of probabilistically determinate processes. We conclude with

a section 6 on the asymptotic metric.

4In particular the results on finite detectability of logical satisfaction.



2 Background

This section on background briefly recalls definitions from previous work [BDEP97, DEP98, LS91 ] on partial

labeled Markov processes and sets up the basic notations and framework for the rest of the paper. Our

definitions are for discrete spaces, see [BDEP97] for the continuous space definitions.

Definition 2.1 A partial labeled Markov chain (plMc) with a label set L is a structure (S, {kz I 1 6 L}, s),

where S is a countable set of states, s is the start state, and Vl 6 L.kz : S x S ---4 [0, 1] is a transition function

such that V s 6 S. }--_.tkl (s, t ) < 1.

A plMc isfinite ifS isfinite.

There is no finite branching restriction on a plMc; kt(s, t) can be non-zero for countably many t's. kt is

extended to a function S x "P(S) ---+ [0, 1] by defining: kt(s, A) = _'_teA kt(s, t). Given a plMc P =

(S, {kl [ l 6 L}, s), we shall refer to its state set, transition probability and initial state as Sp, k ff and sp

respectively, when necessary.
We could have alternatively presented a plMc as a structure (S, {kt I l 6 L}, #) where # is an initial

distribution on S. This notion of initial distribution is no more general than the notion of initial state. Given

a plMc with initial distribution P, one can construct an equivalent plMc with initial state Q as follows.

S o = Sp U {u} where u is a new state not in Sp. u will be the start state of Q. ktQ(s,t) = kff(s,t) if

s,t 6 Sp; kO(s,u) = O, and kO(u,t) = _-_klP(s,t)#P(s). We will freely move between the notions of
initial state and initial distribution. For example, when a transition on label l occurs in a plMc P, there is a

new initial distribution given by #'(t) = _ kl(s, t) x #(s).

We recall the definition of bisimulation on plMc from [LS91].

Definition 2.2 An equivalence relation, R, on the set of states of a piMc P is a bisimulation if whenever

two states sl and s2 are R-related, then for any label I and any R-equivalence class of states T, kt(sl, T) =

kz(s , T).
Two plMcs t), Q are bisirnilar if there is a bisimulation R on the disjoint union of P, Q such that sp R SQ.

In [DEP98] it is shown that bisimulation can be characterized using a negation free logic £: rl¢l A

¢2lIa)q¢, where a is an label from the set of labels L and q 6 [0, 1) is a rational number. Given a plHc

P = (S, _, ka, s) we write t _p ¢ to mean that the state t satisfies the formula ¢. The definition of the

relation _ is given by induction on formulas.

t _pT

t _p (a)q¢ ¢, 3A C_ S.(Vt' E A.t' _p ¢) A (q < ka(t, A)).

In words, t _p (a>q¢ if the system P in state t can make an a-move to a set of states that satisfy ¢ with

probability strictly greater than q. We write I¢]P for the set {s 6 SPIs _ ¢}. We often omit the P subscript
when no confusion can arise. The results of [DEP98] relevant to the current paper are:

,, Two plMcs are bisimilar if and only if their start states satisfy the same formulas.

• [DEP98] also shows how to construct the maximal autobisimulation on a given system. In the finite

state case, this yields a state minimization construction.

The following example helps to illustrate some of the key aspects of the logic.
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Figure 1" Two processes which cannot be distinguished without negation in HML.

Example 2.3 (Example from [DEP98]) Consider the processes shown in figure 1. They are both nonproba-

bilistic processes. It is well known that they cannot be distinguished by a negation-free formula of Hennessy-

Milner logic; the process on the left satisfies (a)_(b) T while the process on the right does not. However, for

no assignment of probabilities are the two processes going to be bisimilar. Suppose that the two a-labeled

branches of the left hand process are given probabilities p and q, assume that the b-labeled transitions have

probability 1. Now if the right hand process has its a-labeled transition given a probability anything other

than p + q, say r > p + q we can immediately distinguish the two processes by the formula (a)p+qT which

will not be satisfied by the left hand process. If r = p + q then we can use the formula (a)r,(b)u2T, where

q < r' < r. The left hand process cannot satisfy this formula but the right hand one does unless p = 0 in

which case the processes are bisimilar.

3 An alternate characterization of probabilistic bisimulation

In this section, following Kozen [Koz85], we present an alternate characterization ofprobabilistic bisimulation

using functions into the reals instead of the logic £. We first show that for countably infinite plHcs, we can

work with their finite sub-plHcs. Then we define a set of functions which are sufficient to characterize

bisimulation. It is worth clarifying our terminology here. We define a set of functional expressions by giving

an explicit syntax. A functional expression becomes a function when we interpret it in a system. Thus we

may loosely say "the same function" when we move from one system to another. What we really mean is

the "same functional expression"; obviously it cannot be the same function when the domains are different.

This is no different from having syntactically defined formulas of some logic which become boolean-valued

functions when they are interpreted on a structure.

Logical satisfaction is finitely detectable

Definition 3.1 P is a sub-plMc of Q if Sp c_ SQ and (VI) [kf (s, t) <_ kQ(s, t)]

Thus, a sub plHc of a plMc has fewer states and lower probabilities. The logic/2, since it does not have

negation, satisfies a basic monotonicity property with respect to substructures.

Lemma 3.2 lfP is a sub-plHc of Q, then (Vs 6 Sp) Is _p ¢ =_ s _Q ¢]

Proof. The proof proceeds by induction on ¢. It is immediate for T and conjunction. Let s _p (a)q.¢.

Then, we deduce:

=* q < ]_ (s, I _ t P) P is a sub-plmc of Q

=,, q < k_ (s, I _b1Q) by induction on _b

=_ S _Q (a>q._b.



A1

80 80
82 81 82

1 _ 1

83 84 83

A2 A3 A4

Figure 2: Examples of plMcs
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Every formula satisfied in a state of a plMc is witnessed by a finite sub-plMc.

Lemma 3.3 Let P be a plMc, s 6 Sp, such that s _p 4,. Then there exists a finite sub-plMc of P, Q_,

such that s 6 SQ, and s _Q 4,.

Proofi The proof is by induction on 4,. For T, the one state plMc containing s suffices. For 4'1 A 4,2, we

take the union of the finite plMcs, Q_,_, Q_ given by the induction hypothesis. Note that lemma 3.2 ensures
that the plMc so constructed satisfies s _ 4,x and s _ 4,2.

Let s _p (a)q.%b. Then, since q < kPa(s,[%blp), there is a finite subset U = {sl,... ,sn} C_ I%blp,

such that q < kPa(s, U). The required finite plMc, Q_a>q.¢ is now constructed by taking the unions of the

finite plMcs, Q_a,... , Q_,, adding state s and the transitions from s to si for i = 1... n. II

We now give the class of functional expressions. First, some notation. Let [rJq = r - q if r > q, and 0

otherwise. [r]q = q ifr > q, and r otherwise. Note that [rjq + [r] q = r.

For each c 6 (0, 1], we consider a family .T c of functional expressions generated by the following gram-

mar. Here q is a rational in [0, 1].

C ::= As. 1 Constant schema

[ As. min(ff(s), f_(s)) Min schema

[ As.c x _,teska(s,t)fc(t) Prefix schema

[ As.LfC(s)Jq [ As.[fC(s)] q Conditional schema.

The functional expressions generated by these schemas will be written as 1, rain(f1, ./2), (a).f, [fJ q and

If] q respectively. One can informally associate functional expressions with every connective of the logic £ in

the following way -- the precise formalization will be presented in lemma 3.7. "I"is represented by As.1 and

conjunction by min. The contents of the connective (a)q is split up into two expression schemas: the (a).f

schema that intuitively corresponds to prefixing and the conditional schema [fjq that captures the "greater

than q" idea.
Given a plMc P, any expression fc 6 _c induces a function f_, : Sp --+ [0, 1].

Example 3.4 Consider the plMcs A1 and A2 of figure 2. All transitions are labeled a. The functional

expression ((a).l) c evaluates to c at states so, 82 of both Ax and A2; it evaluates to 0 at states Sl, s3 of A1

and s3, s4 of A_,. and it evaluates to c/2 at state sx of A2. The functional expression ( (a). (a). 1)c evaluates to

3c2 / 4 at states so of A1, A2 and to 0 elsewhere. The functional expression (<a). [(a).lj ½)c evaluates to 3c2 / 8

at state so of A1 and to c2/4 at state so of A2.



Example 3.5 Consider the plMc As of figure 2. All transitions are labeled a. A functional expression of the

form (<a) ..... {a) .1) c evaluates to cn at state so. On state so of plMc A4 the same functional expression

n

evaluates to (c × 0.4) n.

The following lemma is the functional analog of lemma 3.2.

Lemma 3.6 If P is a sub-plMc of Q, then (Vs 6 Sp) [f_(s) < f_(s)].

The proof is a routine induction on the construction of the functional expression fc and is omitted.

Lemma 3.7 Given any ¢ E £. and a finite plMc P, and any c 6 (0, 1], there is a functional expression

fc 6 .T c such that

1. gs E Se./_(s) > 0 iris _p ¢. "

2. foranyplMc Q, Vs E Sc2.s _p ¢ :=_ f_(s) = O.

Proof. The proof is by induction on the structure of ¢. If ¢ = T, the functional expression As.1 suffices. If

¢ = _bl A ¢2, let ff and f_ be the functional expressions corresponding to g'x and ¢2- Then the functional

expression As. min(f{(s), f{(s)) satisfies the conditions.

If ¢ = (a)q 4b, let 9c be the functional expression corresponding to _/,yielded by induction. Let SW be the

set of states in P satisfying ¢, and let x = min{9(s) I s E S_}. By induction hypothesis, x > 0. Consider

the functional expression fc given by [(a).[g]ZJc:_q. For all t 6 I¢], ([g]x)(t) = x. Now for any state
s6 Sp,

ko(s,t)

Now for each state s • I ¢ ]' ka(s, I¢ ]) > q" Thus fc satisfies the first condition.

The second condition holds because for any state s in Q, ( (a). [9] z )(s) < cx ka (s, I ¢ ] O), so if ka (s, [ ¢ ] Q) <

q then = 0. II

Corollary 3.8 For any plMc P and state s • Sp, if s _p ¢ then there exists fc • .Tre such that f_(s) > 0

and (VplMc R) (Vs 6 SR) f_(s) > 0 _ s _R ¢.

Proof. Let s be a state in plMc P such that s _p ¢. By lemma 3.3, there is a finite sub-plMc Q of P

such that s _O ¢. By lemma 3.7, 3f c E .T c such that f_(s) > 0 and for any p'lMc R, '¢s • Sn.s _ 49

f_(s) = 0. By lemma 3.6, f],(s) > 0, so fc satisfies the conditions required by the lemma. II

Theorem 3.9 ForanyplMc P, (Vc E (0, 1]), Vs, s _ • St,

[(V¢ E/_) s _p ¢ ¢t, s' _p ¢] ¢:t, (Vf 6 .T"c) [/_(s) =/_,(s')].

Proof. Let (re • £) s _p ¢ _ 8t _p ¢. Then, by the results of [DEP98], there is a bisimulation R

such that s, s _ are in the same equivalence class. We now show that for any bisimulation R, sRs _implies that

(Vf • .T"c) [f_%(s) = f_(s')]. The proof proceeds by induction on the structure of the function expression fc.

The key case is when fc is of the form ((a).g)C. Let Ei be the R-equivalence classes. Then:

= e x EtEs ko(s, tW(t)
= c × ka(s,t)ge(t)
= c × _i[gC(Ei) × ka(s, Ei)] by induction, gC is constant on Ei

= c x Ei[gC(Ei) x ka(s',Ei)] from s R s'

= c x El EriE, ka(s',t)g_(t) = f_(s').

For the converse, let ¢ be such that s _p ¢ and s' _p ¢. By corollary 3.8, there is a functional expression

fc such that f_(s) > 0 and f_(s') = O. II



Example 3.10 Consider the plMcs A1, A2 of figure 2. The calculations of example 3.4 show that the so

states of A1, A2 are distinguishable. Furthermore, the states are indistinguishable if we use onh, the fimction

schemas Constant. Min and Prefixing. Thus. example 3.4 shows that the conditional functional expressions

are necessarx:

4 A Metric on Processes

Each collection of functional expression A-c be the set of all such expressions induces a distance function as

follows:

dc(p,Q) = sup If_(sP) - f_(sQ)E.
fc61c

Theorem 4.1 For all c 6 (0, 1], d e is a metric.

Proof. The transitivity and symmetry of d c is immediate, dc(P, Q) = 0 iff P and Q are bisimilar follows
from theorem 3.9. I

Example 4.2 The analysis of example 3.10 yields dC(A1, A2) = c2/8.

Example 4.3 Example 3.5 shows the fundamental difference between the metrics d c, c < 1 and d 1. For

c < 1, dC(Aa, A4)is witnessed by ((a).l) c and is given by dC(A3,A4) = 0.6c. In contrast, dl(Aa,A4) =

sup{1 - (0.4) n I n = 0, 1,... } = 1. What this shows is that the notion of convergence is different for the two
metrics. If we had a family of processes like A4 with the transition probability given by 1 - ± the distance of

these processes from A3 would always be 1, hence they would not converge to A3 in the d]nmetric, but they

wouM converge to A3 in any d e metric with c < 1. Thus the d1 metric defines a different topology than do the

other metrics.

Example 4.4 (Analysis of Example 1.4) Consider the family ofplMcs {P_ I 0 < e < r} where P_ = ar-_.Q,

i.e. P_ is the plMc that does an a with probability r - e and then behaves like Q. The function expression

((a).l) e evaluates to (r - e)c at P_. This functional expression witnesses the distance between an), two P's

(other functions will give smaller distances). Thus, we get d( P_ , P_2 ) = Clel - e2 I. This furthermore ensures

that P_ converges to t'o as e tends to O.

Example 4.5 (from [DEP98]) Consider the plMcs P (left) and Q (right) of figure 3. Q is just like P except
that there is an additional transition to a state which then has an a-labeled transition back to itself. The

probabilit 3, numbers are as shown. If both pl Mcs have the same values on all functional expressions we will

show that q_z = O, i.e. it really cannot be present. The functional expression ((a).l) c yields c(_-_i>o pi )

on P and c(qoo + _,i>o qi) on Q. The functional expression ((a).(a).l) c yields c2(_f'_,i>_lPi) on P and

cZ(qoo + _"_-i>2qi) on Q. Thus, we deduce that Po = qo. Similarly, considering functional expressions

( (a).(a).(a).l-) c etc, we deduce that pn = qn. Thus, qoc = O.

A decision procedure for d c, e < 1. Given finite plMcs P,Q, we now provide a decision procedure for

computing dc(p, Q) for c < 1 to any desired accuracy c", where n is a natural number. We do this by

computing supFlf_(sp) - fc(sQ)l for a finite set of functions F, and then show that for this F, dc(P, Q) -

supFlfC(sp) - fC(sQ) I <_ c".

Define the depth of a functional expression inductively as follows: depth(As.l) = O, depth(rnin(f_, f_)) =

max(depth(f_), deptb(f_) ) and depth( [fCjq) = depth([fcl q) = depth(f c), depth( (a).f c) = depth(f c) +

9



Figure3:Probabilityandcountablebranching

1. Thenit isclearthat[fC(sp) - fC(sQ) I _ Cdepth(f). Now if we include in F all functions of depth < n,

then dc(p, Q) - supFlfC(sp) - fc(sQ)[ < cn.

However there are infinitely many functional expressions of depth < n. We now construct a finite subset

of these, such that the above inequality still holds. Let A i = {3_._gl_4..a___,k] k -= 0,... 3m+l+n-i}, where

1/3 m < cn. We construct the set of functions inductively as follows. Let F i be the set of all functions of

depth _< i. Define:

F_+l =

F_+I :

F_+I :

{(a).f l f E F i}

{Ilia If e F_+.l,q • A i+a}

F _ 12{[f]q [ f E F_+X,q e A i+a}

F i+l is defined by closing F_ +1 under pairwise mins.

We can prove that for any fc E joe of depth < n, there is a function in F n that approximates it closely

enough.

Lemma 4.6 Let fc E _c be of depth i < n. Then, there exists gc/ E F i such that:

1

(VplMc P) (Vs 6 Sp) [lff(s) - 9}(s)l _< 3m+n_i].

Proof. The proof proceeds by induction on i. In this extended abstract, we only sketch the two basic ideas of

the proof for the inductive step.

(1) The following identities show that repeating steps 2, 3, 4 on F i+1 does not get any new functions.

LLfJqJr -= [fJe+_ [[fqq]r _ [f]min(q,r)

LgfqqJr = rLfj qq -r
Lrnin(fl, f2)Jr = min(tfxJ_, [f:J_) [rain(f1, f2)] _ = rain(If1] _, [f2]_).

(2) Define fl, f2 to be e-close if for all states s E Sp U SQ, Ifl(s) - f2(s)l < e. Then if fl and f2 are e-close,

then (a).fl and (a).f2 are e-close, and so are [flJq and Lf2Jq, and also rfl] q and If2] q. In addition if f[ and

f_ are also e-close, then rain(f1, f[) and rain(f2, f_) are also e-close. Furthermore,

Iql - q2l < e =_ sup{l[fJq_(x) - [fJq2(x)l} < e.

Similarly, for If](') I

5 Examples of metric reasoning principles

In this section, we use a process algebra and an example coded in the process algebra to illustrate the type of

reasoning provided by our study.

10



5.1 A process algebra

The process algebra describes probabilistically determinate processes. The processes are input-enabled [LT89,

Di188, Jos92] in a weak sense ((Vs E Sp) (Va E L) kaT(s, Sp) > 0) and communication is via CSP style

broadcast. The process combinators that we consider are parallel composition, prefixing and probabilistic

choice. We do not consider hiding since this paper focuses on strong probabilistic bisimulation. Though we

do not enforce the fact that output actions do not block, this assumption can safely be added to the algebra to

make it an IO calculus [Vaa91 ]; this change does not alter the results of this section.

We assume an underlying set of labels .,4. Let L? = {a? I a E al} be the set of input labels, and

L! = {a! I a E .-4} the set of output labels. The set of labels are given by L = L? U L!. Every process P
is associated with a subset of labels: Po C_ L!, the set of relevant output labels. This signature is used to

constrain parallel composition.

Prefixing. P = a?r.Q where r is a rational number, is the process that accepts input a and then performs

as Q. The number r is the probability of accepting a?. With probability (1 - r) the process P = a?r.Q will

block on an a? label. Sp is given by adding a new state, q to SQ. Add a transition labeled a? from q to the

start state of Q with probability r. For all other labels l, add a l? labeled self-loop at q with probability 1. q is

the start state of P.

Output prefixing, P = a!r.Q, where r is a rational number, is the process that performs output action a!
and then functions as Q, is defined analogously. In this case, Po = Qo u {a!}.

Probabilistic choice. P = Q +r Q' is the probabilistic choice combinator [JP89] that chooses between

Q, Q'; Q is chosen with probability r and Q_ is chosen with probability 1 - r.

19o = Qo u Q'o" Sp = SQ t_ SQ,. Now kP(q,A _ A') = k_(q,A) if q E SQ, and kP(q,A _ A') =

kQ'(q,A ') if q E SQ,. In this case, we define an initial distribution #: #({sv}) = r,#({SQ,}) = 1 - r,

referring the reader to section 2 for a way to convert the initial distribution to an initial state.

= CI ' =Parallel composition. P Q l[ Q' is permitted if the output actions of Q, Q' are disjoint, i.e. Qo Qo

0. The parallel composition synchronizes on all labels in QL M Q_.

Po = Qo t_ Qto. Sp = SQ x SQ,. The kF definition is motivated by the following idea. Let s (resp. s' )
be a state of Q (resp. Q'). We expect the following synchronized transitions from the product state (s, s').

c7 c? t I c! c? t' c? c! t'8 ----4 t st ------4 8 _ t S t ----+ s --------4 t S I
c? c! c!

(S, SI) ----* (t, t') (S,8') ----+(t, t') (S, 8') (t, t')

The disjointness of the output labels of Q, Q' ensures that there is no non-determinism. Formally, if I = a! E

ka_((s , kOa,.(s,t) kOa,.'(s',t'). Thecasewhena! E Q_oandl = a?Qo, thenkP_((s, sl),(t,t')) = s'),(t,t')) = x
is similar.

We now show that each of the operations of the process algebra are contraction mappings with respect to

the metric defined above. Since theorem 3.9 shows that d(P, Q) = 0 iff P _ Q, this shows that bisimulation

is a congruence with respect to these operations.

Theorem 5.1 The following hold:

1. dC(lr.P, It.Q) <_ cdC(P, Q) for any label l.

2. dc(p +r R, Q +r R) <_ dc(p, Q) for any R.

dc(P IIR, Q IIR) <_de(P, Q) for a, y R for which the processes 0,7 the left are defined.

11



put,p get,q get?,l-r

(a)Producer (b)Consumer

put?,e

put?,r G

put?,r/)_get?,l- get?,lff2_

(c)Buffer,size2

get,q(l-r) put,p_

_)_ put,pr_ put,prell ,. -(.2)
get,q(l-r)_.-__ get,q(i-r_.._J

(d) Producer II Consumer II Buffer2

Figure 4: The producer consumer example.

Proof. The proof proceeds by induction on functional expressions. Let d._c(P, Q) be the distance using

fc m de(p, Q) = supfc dl,(P, Q). We show that for any fc d)c of the LHS is less than or equal to some

d_c of the RHS. In this extended abstract, we omit the detailed calculations. The key case is fc = (a).hC,
sketched below for the parallel composition. If a = b!, and b! E Ro, then by induction, that we know that

C !d c(P' 11R', Q' IIR') <_d9o(8, Q'), where P_, Q', R' are the same as P, Q, R but with the start distribution
obtained by making a b! transition on the start state in the case of R, and a b? transition in the case of P, Q.

c , e (p,Q). lNow d._c (P II R,Q II R) = c × dCh¢(P' IIR',Q' IIR') < c × dg,(P ,Q') = d(a).gc

Lemma 5.2 The following properties are true of our metric:

1. dC(ar.P, as.P) <_ c ] r - s I.

2. dc(p+_Q,P+sQ)<_lr-sldC(P,Q).

3. dc(p +r Q, P' +r Q) <_ rdC( P, P').

5.2 A bounded buffer example

We specify a producer consumer process with a bounded buffer (along the lines of [PS85]). The producer is

specified by the 1 state finite automaton shown in Figure 4(a) m it outputs a put, corresponding to producing

a packet, with probability p (we omit the ! in the labels). To keep the figure uncluttered, we also omit the

input-enabling arcs, all of which have probability 1. The consumer (Figure 4(b)) is analogous -- it outputs a

yet with probability q, corresponding to consuming a packet. The buffer is an n-state automaton, the states

are merely used to count the number of packets in the buffer, while the probabilities code up the probability

of scheduling either the producer or the consumer (thus the producer gets scheduled with probability r, and

then produces a packet with probability p). Upon receiving a put in the last state, the buffer accepts it with a

very small probability e, modeling a blocked input. The parallel composition of the three processes is shown

in Figure 4(d).

As the buffer size increases, the distance between the bounded buffer and the unbounded buffer decreases

to 0. Let Pk = Producer II Consumer ]l Bufferk, where Bufferk denotes the process Buffer with k states.

Then by looking at the structure of the process, we can compute that d(Pk, P_) oc (cpr) k. This allows us to

conclude the following:

12



pu,p+,© pu,p+s, pu,p+s, 
Figure 5: A producer with transient behavior

As the bounded buffer becomes larger, it approximates an infinite buffer more closely: if m > k then

de( Pk, P_) > de(Pro, P_).

As the probability of a put decreases, the bounded buffer approximates an infinite buffer more closely.

Thus ifp < p', dC(p p, P_) < dc(p/, P_), where the superscripts indicate the producer probability.

Similarly, as the probability of scheduling the Producer process (r) decreases, the buffer approximates

an infinite buffer more closely.

6 The asymptotic metric

Let P be a plM¢. Then P after a is the same plMc but with start distribution given by u(t) = ka(s, t).

We perform some normalization based on the total probability of the resulting initial configuration u(S): If

u(S) > 0, it is normalized to be 1; if u(S) = 0, it is left untouched.

This definition extends inductively to P after s, where s is a finite sequence of labels (a0, al, a2,.. • , ak).

Note that P after s is identical to P except that its initial configuration may be different.

Define the j distance between P, Q, d_(P, Q) = sup{dc(P after s, Q after s) I length(s) = j}. We
define the asymptotic distance between processes P and Q, d_(P, Q) to be

d_(P, Q) = lim sup d_(P, Q).
i_oo j>i

The fact that d c satisfies the triangle inequality and is symmetric immediately follows from the same proper-
ties for d.

Example 6.1 For any plHc P, d_(ar.P, as.P) = 0, where r,s > O. Consider A3 from Figure 2. Without

the normalization in the definition of A3 after s, we would have got tiC(at.A3, as.A3) = clr - sl

Example 6.2 Consider the producer process P2 shown in Figure 5. This is similar to the producer t:'1 in

Figure 4, except that initially the probability of producing put is more than p, however as more put's are pro-

duced, it asymptotically approaches p. If we consider the asymptotic distance between these two producers,

we see that dC(p2 after put n, t91 after put n) cx 2 -(n+l). Thus d_(P1, P2) = 0. Now by using the composi-

tionality of parallel composition (see below), we see that dc(P1 [[ Consumer [[ Bufferk, t:'2 [[ Consumer [[

Bufferk ) = O, which is the intuitively expected result.

Parallel composition and prefixing in the process algebra are contraction mappings with respect to the

metric defined above -- this will show that asymptotic equivalence is preserved by these operations.

Theorem 6.3 The following hold:

1. dCoc(lr.P, lr.Q) <_ d_(P, Q) for any label l.

2. dg(P [[ R, Q [[ R) < doo(P, Q).

For the key case of parallel composition, the proof is based on: (P ]] Q) after s = (P after sl) I] (Q after s2),

where sl has those a! labels of s replaced by a? where a! _ Po, and similarly for s2.
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